
Illumina HiSeq-2000 Address Transform

National Center for Biotechnology Information (NCBI) – National Library of

Medicine

Draft D Oct 15 2010

Problem Statement
The SRA Illumina Genome Analyzer loaders rely on the GA and GA II address field convention

(flowcell:lane:tile:x:y) to determine the order of spots in the run data file and to detect duplicates. To

constrain the size of these fields, the SRA loader allows up to a maximum of 24,576 for X and Y. With

HiSeq-2000 the addressing that reflected use of a discrete camera field per tile has given way to a

continuous camera field covering much more area, so Y values up to 200,000 are commonly seen. All

HiSeq-2000 runs have this problem.

There is no simple way to fix the SRA loaders to adapt to HiSeq-2000 data. Instead the SRA loaders will

adopt a more general strategy of address determination and duplicate detection. In the meantime, we

propose that submitters transform their HiSeq-2000 data in such a way as to restore the GA addressing

parameters without loss of data or information. This approach will be reversible if it later becomes

possible to archive the native addresses. Runs receiving this treatment should be specially marked. A

fix in the SRA loader code will make this solution redundant. The SRA addressing improvement is

expected early 2011.

Treatment
We have defined the following spot address transformation:

Spot_Tile* = (Spot_Tile x 100) + (Spot_Y / 20000)

Spot_Y* = Spot_Y % 20000

Along with this transformation, some of the transformed spots need to be relocated to later in the qseq

files to ensure that tile addresses are contiguous, which is another requirement of the SRA loaders. For

example, in a file that we received from a submitter s_1_1_0001_qseq.txt, is the following sequence of

spots (line numbers indicated on the left):

242328: SL-HAG 118 1 1 2204 19980
242329: SL-HAG 118 1 1 2213 19996
242330: SL-HAG 118 1 1 2187 20000
242331: SL-HAG 118 1 1 2295 19756
242332: SL-HAG 118 1 1 2380 19756

The address transformation will have this result:

242328: SL-HAG 118 1 100 2204 19980
242329: SL-HAG 118 1 100 2213 19996
242330: SL-HAG 118 1 101 2187 0
242331: SL-HAG 118 1 100 2295 19756
242332: SL-HAG 118 1 100 2380 19756

In order for the transformed address on record 242330 to load successfully, it is relocated further into
the file as record 245435:

242328: SL-HAG 118 1 100 2204 19980
242329: SL-HAG 118 1 100 2213 19996
242330: SL-HAG 118 1 100 2295 19756
242331: SL-HAG 118 1 100 2380 19756
…
245435: SL-HAG 118 1 101 2187 0

To accomplish this reordering, the transform must buffer spots that are assigned to a tile (101) not
currently being input (100). Then, as the tile value changes on input (to 101), the currently buffered
spots (tile 101) are written out and the cycle is repeated.

A perl script is provided below that performs this operation on qseq files that should be available in your
Illumina run folder.

Please also add a RUN_ATTRIBUTE, HISeq_address_transform, with a value of yes, to the Run xml in
order to record the application of the address transformation.

The SRA submission can contain either the modified qseq file(s) (filetype is fastq), or can be converted
into SRF format using the illumina2srf utility from sequenceread-2.1.2
(http://sourceforge.net/projects/sequenceread) (be sure to use version 2.1.2 or later, as sequenceread-
2.1.1 had problems with the modified tiles (e.g. a tile of 100 changes to 1).

Example

A screen capture of the modified and loaded run SRR064189 is presented below.

http://sourceforge.net/projects/sequenceread/

To view this interactively, please visit :

http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?cmd=viewer&m=data&s=viewer&run=SRR064189

http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?cmd=viewer&m=data&s=viewer&run=SRR064189

Method

#!/opt/perl-5.8.8/bin/perl

This is a code excerpt that performs address transformation on Illumina HiSeq-2000

reads in order to

make them loadable by SRA loaders relying on GA and GA II spot addressing

convention.

use strict;

die "\nHiSeq2000_2_SRA.pl < qseq file >\n\n"

 if (scalar @ARGV eq 0 && -t STDIN);

my $TILE_INDEX = 3;

my $Y_INDEX = 5;

Initialize using first line in qseq file

my $firstLine = <>;

my @spot = split(/\t/,$firstLine);

adjustSpot (\@spot);

printSpot (\@spot);

my $currTile = $spot[$TILE_INDEX];

my $nextTile = 0;

my @nextTileSpots = ();

Continue to process qseq file

while (<>)

 {

 my @spot = split(/\t/,$_);

 adjustSpot (\@spot);

 # Print spots in *$currTile*

 if ($spot[$TILE_INDEX] eq $currTile)

 {

 printSpot (\@spot);

 }

 # Determine first *$nextTile* value and start collecting

 # *$nextTile* spots into @nextTileSpots .

 elsif (! ($nextTile))

 {

 $nextTile = $spot[$TILE_INDEX];

 push @nextTileSpots,\@spot;

 }

 # After *$nextTile* is set, continue collecting *$nextTile*

 # spots into @nextTileSpots

 elsif ($spot[$TILE_INDEX] eq $nextTile)

 {

 push @nextTileSpots,\@spot;

 }

 # If *$spot[$TILE_INDEX]* is not *$currTile* or *$nextTile*,

 # then set *$currTile* and *$nextTile* to new values.

 # Output spots collected in @nextTileSpots, and start

 # collecting a new set of *$nextTile* spots in @nextTileSpots.

 else

 {

 printTileSpots (\@nextTileSpots);

 $currTile = $nextTile;

 $nextTile = $spot[$TILE_INDEX];

 @nextTileSpots = ();

 push @nextTileSpots,\@spot;

 }

 }

printTileSpots (\@nextTileSpots);

sub printTileSpots {

 my $nextTileSpotsRef = shift;

 foreach my $spotRef (@$nextTileSpotsRef)

 {

 printSpot ($spotRef);

 }

}

sub adjustSpot {

 my $spotRef = shift;

 $$spotRef[$TILE_INDEX] = ($$spotRef[$TILE_INDEX] * 100) + int (

$$spotRef[$Y_INDEX] / 20000) ;

 $$spotRef[$Y_INDEX] = $$spotRef[$Y_INDEX] % 20000 ;

}

sub printSpot {

 my $spotRef = shift;

 print join ("\t", @$spotRef);

}

